Learning redundant dictionaries with translation invariance property: the MoTIF algorithm

نویسندگان

  • Philippe Jost
  • Pierre Vandergheynst
  • Sylvain Lesage
  • Rémi Gribonval
چکیده

Sparse approximation using redundant dictionaries is an efficient tool for many applications in the field of signal processing. The performances largely depend on the adaptation of the dictionary to the signal to decompose. As the statistical dependencies are most of the time not obvious in natural highdimensional data, learning fundamental patterns is an alternative to analytical design of bases and has become a field of acute research. Most of the time, the underlying patterns of a class of signals can be found at any time, and in the design of a dictionary, this translation invariance property should be present. We present a new algorithm for learning short generating functions, each of them building a set of atoms corresponding to all its translations. The resulting dictionary is highly redundant and translation invariant.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pooling-Invariant Image Feature Learning

Unsupervised dictionary learning has been a key component in state-of-the-art computer vision recognition architectures. While highly effective methods exist for patchbased dictionary learning, these methods may learn redundant features after the pooling stage in a given early vision architecture. In this paper, we offer a novel dictionary learning scheme to efficiently take into account the in...

متن کامل

A Panorama on Multiscale Geometric Representations, Intertwining Spatial, Directional and Frequency Selectivity

The richness of natural images makes the quest for optimal representations in image processing and computer vision challenging. The latter observation has not prevented the design of image representations, which trade off between efficiency and complexity, while achieving accurate rendering of smooth regions as well as reproducing faithful contours and textures. The most recent ones, proposed i...

متن کامل

ASIC Design of Butterfly Unit Based on Non-Redundant and Redundant Algorithm

Fast Fourier Transform (FFT) processors employed with pipeline architecture consist of series of Processing Elements (PE) or Butterfly Units (BU). BU or PE of FFT performs multiplication and addition on complex numbers. This paper proposes a single BU to compute radix-2, 8 point FFT in the time domain as well as frequency domain by replacing a series of PEs. This BU comprises of fused floating ...

متن کامل

Non-uniform Single Image Deblurring Based on Sparse Representation and Adaptive Dictionary Learning

Considering the sparseness property of images, a sparse representation based iterative deblurring method is presented for single image deblurring under uniform and non-uniform motion blur. The approach taken is based on sparse and redundant representations over adaptively training dictionaries from single blurred-noisy image itself. Further, the K-SVD algorithm is used to obtain a dictionary th...

متن کامل

Evolution-enhanced multiscale overcomplete dictionaries learning for image denoising

In this paper, a multiscale overcomplete dictionary learning approach is proposed for image denoising by exploiting the multiscale property and sparse representation of images. The images are firstly sparsely represented by a translation invariant dictionary and then the coefficients are denoised using some learned multiscale dictionaries. Dictionaries learning can be reduced to a non-convex l0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005